Analysis of RNA Interference Lines Identifies New Functions of Maternally-Expressed Genes Involved in Embryonic Patterning in Drosophila melanogaster
نویسندگان
چکیده
Embryonic patterning in Drosophila melanogaster is initially established through the activity of a number of maternally expressed genes that are expressed during oogenesis. mRNAs from some of these genes accumulate in the posterior pole plasm of the oocyte and early embryo and localize further into RNA islands, which are transient ring-like structures that form around the nuclei of future primordial germ cells (pole cells) at stage 3 of embryogenesis. As mRNAs from several genes with known functions in anterior-posterior patterning and/or germ cell specification accumulate in RNA islands, we hypothesized that some other mRNAs that localize in this manner might also function in these developmental processes. To test this, we investigated the developmental functions of 51 genes whose mRNAs accumulate in RNA islands by abrogating their activity in the female germline using RNA interference. This analysis revealed requirements for ttk, pbl, Hip14, eIF5, eIF4G, and CG9977 for progression through early oogenesis. We observed dorsal appendage defects in a proportion of eggs produced by females expressing double-stranded RNA targeting Mkrn1 or jvl, implicating these two genes in dorsal-ventral patterning. In addition, posterior patterning defects and a reduction in pole cell number were seen in the progeny of Mkrn1 females. Because the mammalian ortholog of Mkrn1 acts as an E3 ubiquitin ligase, these results suggest an additional link between protein ubiquitination and pole plasm activity.
منابع مشابه
Cytotype regulation by telomeric P elements in Drosophila melanogaster: evidence for involvement of an RNA interference gene.
P elements inserted at the left telomere of the X chromosome evoke the P cytotype, a maternally inherited condition that regulates the P-element family in the Drosophila germline. This regulation is completely disrupted in stocks heterozygous for mutations in aubergine, a gene whose protein product is involved in RNA interference. However, cytotype is not disrupted in stocks heterozygous for mu...
متن کاملQuantitative Single-Embryo Profile of Drosophila Genome Activation and the Dorsal-Ventral Patterning Network.
During embryonic development of Drosophila melanogaster, the maternal-to-zygotic transition (MZT) marks a significant and rapid turning point when zygotic transcription begins and control of development is transferred from maternally deposited transcripts. Characterizing the sequential activation of the genome during the MZT requires precise timing and a sensitive assay to measure changes in ex...
متن کاملAn F1 genetic screen for maternal-effect mutations affecting embryonic pattern formation in Drosophila melanogaster.
Large-scale screens for female-sterile mutations have revealed genes required maternally for establishment of the body axes in the Drosophila embryo. Although it is likely that the majority of components involved in axis formation have been identified by this approach, certain genes have escaped detection. This may be due to (1) incomplete saturation of the screens for female-sterile mutations ...
متن کاملDepleting gene activities in early Drosophila embryos with the "maternal-Gal4-shRNA" system.
In a developing Drosophila melanogaster embryo, mRNAs have a maternal origin, a zygotic origin, or both. During the maternal-zygotic transition, maternal products are degraded and gene expression comes under the control of the zygotic genome. To interrogate the function of mRNAs that are both maternally and zygotically expressed, it is common to examine the embryonic phenotypes derived from fem...
متن کاملTarget genes of Dpp/BMP signaling pathway revealed by transcriptome profiling in the early D.melanogaster embryo.
In the early Drosophila melanogaster embryo, the gene regulatory network controlled by Dpp signaling is involved in the subdivision of dorsal ectoderm into the presumptive dorsal epidermis and amnioserosa. In this work, we aimed to identify new Dpp downstream targets involved in dorsal ectoderm patterning. We used oligonucleotide D. melanogaster microarrays to identify the set of genes that are...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 5 شماره
صفحات -
تاریخ انتشار 2015